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Purpose & Outline

= Data Uncertainty & Confidence in Measurements
Data Fitting - Linear Regression

= Error Propagation

Quantization Error
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Context

= Understanding data uncertainty and being able to
specify the confidence of measurements is a crucial
engineering skill...

= Bad things happen when people do not understand
or account for data uncertainty.

= From the Professional Engineering Practice
Standpoint, understanding data uncertainty is a key
risk management activity
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Additfional Resources

= “Data Analysis, Standard Error and Confidence
Limits” supplemental handout on E80 welsite

= Engineering Statistics Handbook, NIST

o http://www.itl.nist.gov/div898/handbook/index.htm
o ISO Guide to the Expression of Uncertainty in Measurement

ENG'NEER'NG /HANDBOOK CHAPTERS
STATISTICS B 1. Explore
H —a M (1] B %] Cx B W 2. Measure
B 3. Characterize
Welcome! The goal of this W 4. Model
handbopok s 1o help sclentlsts B 5. Improve
and engineers incorperats W 6. Monitor

B 7. Compare
W 8. Reliability

statistical methoads in their
waork as efficiently as possible.
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Qutline

Uncertainty & Confidence in Measurements
Linear Regression
= Error Propagation
Quantization Error
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Confidence in Measurements

= When we take measurements, we want to know how
‘good” they are.

“Uncertainty is a measure of the 'goodness’ of a result. Without
such a measure, it is impossible to judge the fitness of the
value as a basis for making decisions relating to health,

safety, commerce or scientific excellence” - nist engineering statistics
handbook

= Need to describe their “goodness” in a meaningful
way
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Basic Measurement Assumptions

= Each measurement (rocket motor mass, temperature,
etfc.) has some “random” noise & uncertainty

= There is some “true” value of x that we are trying to
measure

u

= The distribution of measurements is normal (Gaussian)
and the “True” value lies at the center of the
distribution

= We will approximate pu and this distribution from our
measurements
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Example: What is the location?
= Professor Clark’s AUV stationary GPS position output

333333333

_
33333333
-
0.5om
4
l_.}.- U q)
¥y v U
L4
W v -
S —~4.5m
F; L .
bbbbbbbb I
v
I |
g - -
120.6264 -120.6264 -120.6264 -120.6264

Longitude



For a basic measurement...

= Consider N measurements

Xj Xo X3 e Xy
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Sample Mean & Error

= For N measurements, the sample mean is

A

_ 1
X=—3 5
NZ1 ‘
= |f we knew the true value (u), we could calculate the
error in each measurement

& =X H

= We define the residual error (residuals), for each
measurement, to be The mean depends on

. —_ the measurements...
€, —X;-X therefore only N-1 of the
residuals are

independent... Lost a
degree of freedom
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Sample Variance & Standard Deviation

= We characterize our residual errors using the sample
variance:

i=1

a The sample variance §° characterizes the spread of the
measurements.

= The sample standard deviation can be defined as:
S =/s?

a S approximates o (true std. dev.) -2 degree to which individuadl
measurements x vary from p, but does not tell us how far X is
from
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proportion of samples that would fall
between 0, 1, 2, and 3 standard deviations
above and below the actual value.
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Estimated Standard Error

= We estimate how far the sample mean X is from the
actual value p using the estimated standard error:

ESE =_§

In

ex: sample mean x = 42.000, sample standard deviation
S=0.01, N =200,

= ESE =0.100/sagrt(200) = 0.0071

= X =42.000 = 0.007 (confidence level ()) ¢)
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Standard Error Confidence Interval

34.1% 34.1%

0.0 01 02 03 04

X = 42.000 £ 0.007 (68% confidence interval)
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Confidence Intervals

= As the sample size decreases, normal distribution
under-reports uncertainty...

= The Student’s T-Value (t) is used to estimate the
confidence interval (A)

a relates the confidence interval fo the area under a
standard distribution

/L = ESE*t
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Student’s T-Value

» Use lookup table to get t

a confidence interval A = 1 —significance level

a degrees of freedom (df) = number of samples N minus
number of parameters estimated

SIGNIFICANCE LEVEL FOR TWO-TAILED TEST 0.40
@[ 20 [ 10 [ 05 | 02 | Oof | 001 0.35
T | 3078 | 6314 | 12706 | 31821 | 63657 | 636610 -

7 1886 [ 2920 | 4303 | 6965 | 9925 31398 0.30

T 1638 | 2333 [ 3182 | 4347 | 5341 7947

4 [ 13533 | 2132 | 2776 | 3.747 | 4604 8610 0.25

5 | 1476 | 2015 | 2371 | 3365 | 4032 6859 x 0.20

[0 [ 1372 [ I8IZ | 2228 | 2764 | 3169 7587 o
20 [ 1325 [ 1735 | 2086 | 2328 | 2845 3850 0.15

30 [ 1310 | 1697 [ 2042 | 2457 | 2750 | 3.646

40 | 1303 | 1684 | 2021 | 2423 | 2704 3551 0.10
60 [ 1296 [ 1671 | 2000 | 2390 | 2660 | 3460 0.05
20 [ 1289 | 1.658 L 1080 | 2358 | 2617 3373

= [ 1282 [ T6d5 | 1960 |[ 2326 | 2576 | 3291 0.00!
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UAV Example...

= |Letfs get back to our AUV's GPS measurements of
longitude. Here are N measurements:

= The corresponding;omple meaa, sample standard
deviation, and estimated standard error can be
calculated:

x =-120.626368 S =7.71967E-06 ESE =3.8265E-07
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Confidence in Measurements
= Examples.... (x =120.626368° , ESE = 3.8265E-07, . = ESE*t )

N| P t A

3] 95%]| 4.303 1.7E-06
60| 95% 2 /. 7TE-O7
31 99%| 9.925 3.8E-06
60| 99%| 2.66 1.0E-06

SIGNIFICANCE LEVEL FOR TWO-TAILED TEST
Tdaf [ 20 | 10 05 [ 02 | oI [ o0l
[ [ 3078 | 6314 | 127706 | 31821 | 63657 | 636619
7 [ 1886 | 2920 | 4303 6965 9925 | 31398
3 [ 1638 | 2353 [ 3.182 J3541 5841 [3941
¥ [ 1533 | 2132 | 2776 3747 4.604 8610
5 | 1476 | 2015 | 2571 3.365 1032 6.859
10 [ 1372 [ I8IZ | 2228 27764 3169 4387
30 [ 1325 | 1725 | 2086 | 2328 | 2845 | 3350
30 | 1310 | 1697 | 2042 2457 2750 3646
(40 [ 1303 | T684 | 2020 2423 2704|3351
60 | 1.296 1.671 2.000 2.390 2.660 | 3.460
[20 [ 1289 | 1658 | 1980 3358 7617 3373
"% | 1282 [ 1645 | 1960 7326 2576 | 3291
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Confidence in Measurements

= Summary:
. Calculate your meanx
2. Calculate your estimated standard error ESE
5. For a given df and significance level = I- P, find ¢t from table
«. Calculate 1 =ESE *¢
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Qutline

= Confidence in Measurements
= Linear Regression
= Error Propagation
Quantization Error
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Linear Regression

= Sometimes we measure one variable x, but are
iInterested in another variable y = f(x)

= Often, f() is assumed to be linear

y =Byt p;x



Linear Regression

= Shark tracking Example...
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Linear Regression

= Shark tracking Example, sensor calibration
Sensor output

. / (+/-9)
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Linear Regression

= We usually must estimate the coefficients g, and g,.
from a data set:

(X3 Y1) (X3, Y3), oo (Xpo Vi)

= Qur model becomes

/AN N /\
Yy =pytp;x
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Linear Regression

= To estimate g, and g, we minimize the Sum of
Squared Errors:

N

N - = o
SSE=) e’ = Z[.\} - ( Bo + P, H
i=1 i=1 |

= This minimizatfion results in

: : o 2 (x5=X)(y-)
Po=y—-bBx B, = = N
359
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Linear Regression

» How much confidence do we have in ,3\0 and ﬁ] ¢

= Equivalent of the sample standard deviation for
linear regression S is the Root Mean Squared
Residual, S,

N
:
2.4
=1

SSE !
*T\v—2 \n-2
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Linear Regression

. . N N
* How much confidence do we have in f,and g, ¢
a Sample standard error given by...

1 x S, =S 1

LS‘ — LS‘ + " ' . T *

BO € N ¢ ﬁl e N

N —\2 —\2
E (x,—%) Z(.\‘f —-X)
i=1 i=1

(S, = root mean squared residual)

»Confidence Intervals

Jy =18 Ay =18,
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Linear Regression

= How much confidence do we have iny ¢
a Sample Standard Error given by:

s [, D
N 2(-"} a I)_

i=1
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Linear Regression

» Quick Summary:
a Given a set of (x, y) pairs, we can calculate

1. The coefficient estimates ﬁo, ,/8\, of the linear regression
> The confidence limits 44, 45, 0n the coefficients
. The confidence limits 4,on the y values
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Qutline

= Confidence in Measurements
= Linear Regression
= Error Propagation
Quantization Error
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Error Propagation

= Given afunction F(x, y, z ... ), and known error in
variables x, y, z, ... , whatis the errorin F ¢
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Error Propagation

= Assuming that errors are small and the residuals are a
reasonable approximation of the errors,

= One can do a Taylor series expansion of F about the
true values of the variables, keeping only 15t order
terms

oF oF oF
F B Eme - a_x('r o 'x'rrue) ;5 g(.v o .}?:rmf)_*_ a_z(‘:* o ":;rme) Ry
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Error Propagation

= Forerrors ¢ =x-x,, ., that are systematic, known, and
small (so that linear approximations are accurate),
we can rewrite as:
OF OF  OF
€'=_8_1-+—_E_\-+—_€:+""

" ox dy 0z
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Error Propagation

= |f errors of x, y, z, ... Are independent random
variables (more common), then standard errors are
assumed related by root-sum-of-squares:

aif]2 . [aFT ;
— f;+ ? E‘;+---

OFY |,
Ep = - E‘_:+
ox d

-\. r
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Error Propagation

= Example:

a We model the range to a shark tag p as a function of the
strength of the received acoustic signal s.

p — KS Sa
)
B ~ s P
a <[ is constant Y‘ ¥
chark
I
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Error Propagation

= Example cont’:

a If we know the sample variance §.2 in signal strength
measurements, and the variance §,7 in K, we can calculate
fhe corresponding variance in range §,°

S,2 = (dp /ds)? S2 + (dp /dK,)? S
— (aKSSa—I)Z Ss2 + (Sa)Z SK2



E30

Experimental Engineering

Qutline

= Confidence in Measurements
Linear Regression
= Error Propagation
Quantization Error
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Quantization Error

= |Lefts revisit the static AUV plot of positions...

15112975

', = N s
- e =71 -
L Y A
v 4 3511236
== 2 ~1 meter
Y=< )
Ay 7 35112355
T

We have ~0.1 meter resolution
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Quantization Error

= We often withess finite precision in our sensors.

a If the sample standard deviation S of our measurements is
much larger than the quantization error S (i.e., § > 10S,), we
can ignore the quantization error.

a If the quantization error is comparable to the sample
standard deviation of the measurement (i.e., S, <§ < 10S),
then we need to include its effects on the error.

° SZused :SZ +S2q
a If the sample standard deviation of the measurement is less

fhan the quantization error (i.e., § <§,), then for the purposes
of E80 report the error as =q/2 (and refer to statistics texts for

more accurate ’rrea’rmen’rl
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Quantization Error

= DMM Example:

o Fora 12 bit DAQ), set to +/- 5V, the smallest resolvable
voltage, or quantization range, equals the range divided by
number of distinct values:

g =10V *1/212=0.027V

a The uncertainty in a DMM is typically 1 least significant digit,
and the uncertainty in a given measurement is q=x2.

o For a series of measurements, the standard deviation s,
a/sart(12)

o Inanindividual voltage measurement, s, is /2 the Least
significant bit, s, = £0.027/2 = £0.013 V
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Summary

= We can calculate confidence intervals for
parameters being measured

= We can construct linear models relating two
parameters, along with their confidence intervals

= We can approximate how the error of one
parameter affects a function of that parameter

= We can check that the quantization error is
iInsignificant



